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Spatial patterns induced by additive noise

A. A. Zaikin and L. Schimansky-Geier
Humboldt-Universita¨t zu Berlin, Invalidenstraße 110, 10115 Berlin, Germany

~Received 18 May 1998!

We consider a nonlinear lattice with spatial coupling under the influence of multiplicative and additive noise.
In contrast to other studies, we pay attention mainly to the role of the additive noise and show that additive
noise, much like multiplicative noise, is able to induce spatial patterns. The reason is that the increase of
additive noise causes a nonequilibrium phase transition that manifests itself in the formation of ordered spatial
patterns. The presence of the additive noise correlated or uncorrelated with the multiplicative noise is a
necessary condition of the phase transition. We review the mean field theory for this model and show that this
theory predicts a reentrant phase transition caused by additive noise. Theoretical predictions are confirmed by
numerical simulations.@S1063-651X~98!12510-2#

PACS number~s!: 05.40.1j, 47.54.1r, 05.70.Fh
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I. INTRODUCTION

Over the past two decades nonlinear systems with n
have been continuously attracting attention. The reason is
ordering role of noise in such phenomena as stochastic r
nance@1#, noise-induced transport@2#, or noise-induced tran
sitions@3#. A large variety of models@4–12# appear to dem-
onstrate nonequilibrium noise-induced phase transition
these studies only multiplicative noise is shown to be
reason for the transition and much less attention has b
paid to the role of additive noise. Recently, we started
study the influence of an additive noise on noise-indu
transitions. It was shown that this influence can be cru
because the additive noise may shift the boundaries of
noise-induced phase transition@13# or even cause these tran
sitions @13,14#.

In the present paper we continue to study the influenc
additive noise on noise-induced phase transitions. We c
sider the role of the additive noise in the formation of t
ordered spatially inhomogeneous patterns. For this we in
tigate a paradigmatic model introduced in@7# ~for the history
of the subject see also@15–18#!. As noted in@19#, investiga-
tion of this model is helpful for the understanding of resu
of experiments on electrohydrodynamic convection in ne
atic liquid crystals with thermal fluctuations~additive noise!
and an external stochastic voltage~multiplicative noise!. We
show that this model displays noise-induced spatial patte
with an increase of additive noise. After exceeding an o
mal level of the additive noise a further increase destroys
structures again.

First we review mean field theory for this model@7#. The
theory predicts the existence of the reentrant phase trans
by increasing the additive noise for two limiting cases
correlation between both additive and multiplicative nois
The transition manifests itself in breaking the symmetry a
appearing ordered spatial structures. Next we perform
merical calculations and confirm some results of the theo
ical considerations. After a discussion about understand
of the phenomena observed we summarize results obtai

II. MODEL AND MEAN FIELD THEORY

We consider a scalar fieldxr defined on a spatial lattice
with pointsr . The time evolution of the field is described b
PRE 581063-651X/98/58~4!/4355~6!/$15.00
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a set of Langevin equations@7#

ẋr5 f ~xr !1g~xr !j r1Lxr1z r , ~1!

with f andg defined as

f ~x!52x~11x2!2, g~x!5a21x2 ~2!

and j r ,z r independent zero-mean-value Gaussian wh
noise sources

^j r~ t !j r8~ t8!&5sj
2d r ,r8d~ t2t8!, ~3!

^z r~ t !z r8~ t8!&5sz
2d r ,r8d~ t2t8!. ~4!

We note that such a form of the functiong(x) implies that
the parametera is responsible for an additive noise strong
correlated with the multiplicative one. To gain knowledg
about the influence of additive noise on the noise-indu
phase transition we study two different problems. First
constant contributiona2 of the multiplicative noisej r is
changed, settingsz

250. The origin one could see, for in
stance, in a decomposition of the multiplicative noise in
two partsg(x)j r5a2j r

11x2j r
2 . Changing the parametera

would imply an increase or a decrease of additive noisea2j r
1

strongly correlated with the multiplicative one. We prov
that the constant contribution of that noise is essential for
nonequilibrium phase transition. Only in the presence of
additive component with an optimally selected value do
the system exhibit spatially disordered states.

A different situation is the variation of the noise intensi
sz

2 . It models additive noise independently of the multip
cative one. In that case we seta50. Again we will find a
strong influence of the additive noisez.

The spatial coupling in the model is described by the c
pling operatorL @see Eq.~1!#, which is a discretized version
of the Swift-Hohenberg coupling term2D(q0

21¹2)2:

Lxr52DH q0
22

1

D2(
i 51

2d F12expS Dei•
]

]r D G J 2

xr . ~5!
4355 © 1998 The American Physical Society
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Hereei are the unit vectors associated with the cubic latt
of the dimensiond, andD is the lattice space.

The conditions of phase transition can be found us
generalized Weiss mean field theory@7#. According to this
theory, we replace the value of the scalar variablexr8 at the
sites coupled toxr by its averaged value, assuming the sp
cific nonuniform average field

^xr8&5^x&cos@k•~r2r 8!#. ~6!

Substituting Eq.~6! into Eq. ~5! we get forxr

ẋ5 f ~x!1g~x!j1Dv~k!x2Deff~x2^x&!1z, ~7!

where

Deff5F S 2d

D2 2q0
2D 2

1
2d

D2 1v~k!GD ~8!

and

v~k!52DFq0
22

2

D2 ~22coskxD2coskyD!G2

. ~9!

The expression forv(k) can be obtained if one conside
how L acts on a plane waveeik•r for the case of a two-
dimensional lattice:

Leik•r5v~k!eik•r. ~10!

FIG. 1. ~a! Boundaries of the phase transition on the pla
(sj

2 ,D) in the case of correlated additive noise. The values of
rametera are shown in the picture.~b! Dependence of the orde
parameteru^x&u on the control parametera for D50.06 andsj

2

53.0.
e

g

-

Note that for uku!2p/D the dispersion relationv(k) re-
duces to the relation for the continuous Swift-Hohenbe
model: 2D(q0

22uku2)2. For the most unstable mode in th
discrete casev(k)50 ~see@7#!.

Now the valuê x& plays the role of the amplitude of th
spatial patterns with an effective diffusion coefficientDeff .
The Fokker-Planck equation corresponding to Eq.~7! in the
casev(k)50 is

]w

]t
52

]

]xF @ f ~x!2Deff~x2^x&!#w2
sj

2

2 S g~x!
]

]x
@g~x!w# D

2
sz

2

2

]w

]x G .
For this equation it is possible to find the exact stea

state probability, parametrically dependent on^x&:

wst~x!5
C~^x&!

Asj
2g2~x!1sz

2
expS 2E

0

x f ~y!2Deff~y2^x&!

sj
2g2~y!1sz

2
dyD ,

~11!

whereC(^x&) is the normalization constant determined by

C21~^x&!5E
2`

` 1

Asj
2g2~x!1sz

2

3expS 2E
0

x f ~y!2Deff~y2^x&!

sj
2g2~y!1sz

2
dyD dx.

~12!

For the valuê x& we obtain

^x&5E xwst~x,^x&!dx, ~13!

-

FIG. 2. Boundaries of the phase transition on the plane (sj
2 ,D)

in the case of uncorrelated additive noise. The parametersz
2 is

equal to 1.0~label 1!, 0.5 ~label 2!, and 0.3~label 3!.
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FIG. 3. Snapshots of the field forD51.0, sj
251.8, andsz

250. The parametera is equal to~a! 0.1, ~b! 1.0, and~c! 10.0. The increase
of the additive noise induces spatial patterns. The scalar field from minimum to maximum value is coded in accordance with the co
shown in the same figure.
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which is nonlinear equation for the unknown value^x& and
closes the system of equations.

Solving Eq.~13!, we can calculate boundaries of phas
with ^x&Þ0 ~order! and ^x&50 ~disorder! for specific k
whose modes are excited first. Nonzero solution of Eq.~13!
means excitation of the corresponding mode and hence e
tence of the phase transition. Due to the special form of
spatial coupling, the transition manifests itself in a formati
of ordered spatial patterns with the wave number defined
the parameterq0 .

The computation of Eq.~13! shows that the condition fo
the existence of nonzero solutions is

UdF

dmU
m50

>1. ~14!

We note that for rather largeD four nonzero roots~two
stable and two unstable! of Eq. ~13! may be observed. It is an
open question whether this indicates that additionally a
noise-induced first-order phase transition may be found
this model~to this point see also@19,20#!.

III. ADDITIVE NOISE AND NOISE-INDUCED
TRANSITION

First we study the case if an additive noise is stron
correlated with multiplicative noise~in this casesz

250). For
different values ofa the boundary of the phase transition o
the plane (sj

2 ,D) is shown in Fig. 1. As it is seen from thi
plot, the reentrant phase transition occurs for the spec
value ofa with the increase ofsj

2 @7#. Solving Eq.~13! for
other values ofa, we find that asa decreases the boundary
the phase transition significantly drops and is right shif
~see Fig. 1!. Hence there is a set of parameters (sj

2 ,D) for
which the reentrant phase transition occurs with the incre
of a ~dashed region in Fig. 1!. This means that for fixed
values ofsj

2 and D an increase of additive noise intensi
will first induce the spatial patterns and then destroy the
We note that this phase transition is possible only in
presence of multiplicative noise. The corresponding dep
dence of the order parameteru^x&u on the control parametera
is shown in Fig. 1~b!.
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Now we study the case where the additive noise is unc
related ~independent! from the multiplicative noise (a
50, sz

2Þ0). As Fig. 2 shows in this case the behavior
the system is qualitatively the same: For fixed parame
(D,sz

2) an increase of the multiplicative noise intensitysj
2

causes the noise-induced phase transition. Hence for l
enough couplingD one expects the formation of the spatial
ordered patterns ifsj

2 exceeds it critical value. As concern
the influence of the additive noise on the transition, an a
plification of the additive noise intensity shifts the transitio
boundaries and therefore causes the reentrant disorder-o
disorder nonequilibrium phase transition. It can be clea
seen if one take a point with fixed parameters (D,sj

2) from
the dashed region in the Fig. 2: With an increase ofsz

2 this
point first belongs to the disordered phase, then to the
dered one, and then again to the disordered phase.

IV. NUMERICAL SIMULATIONS

We check the relevance of the theory presented above
numerical simulations of the initial equations~1!. We use an
Euler scheme for stochastic differential equations interpre
in the Stratonovich sense@21,22#. The time step has been s
Dt5531024. For simulations we integrate the scalar fie
xr(t) on a two-dimensional square lattice 1283128 with
conditionsxr50 andn•“xr50 at the boundaries. Heren is
the vector normal to the boundary.

First we setsz
250 andaÞ0. The remaining parameter

are D51, q050.7, D50.5, andsj
251.8. For these values

the mean field theory predicts the existence of spatial p
terns of the most unstable modeuku51.0478 fora51. For
additive noise intensities significantly larger than this valu
for example,a510.0, or significantly smaller,a50.1, ac-
cording to the mean field theory no spatial patterns will
exhibited.

In Fig. 3 the picture of the field after 100 time units h
been plotted for three different noise intensities. Clearly o
can see the appearance of the spatial patterns with the
crease of the additive noise and its further destruction. Th
calculations confirm the predictions of the mean field the
for the case of correlated additive noise.

The ordered patterns in Fig. 3~b! have rotational symme
try, which can be clearly observed in the two-dimension
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Fourier transform of the field represented in Fig. 4. To ma
the transition more evident we have plotted the Fourier tra
form of the field averaged over the angles of the wave vec
It is shown in Fig. 4 for different values ofa. With an in-
crease ofa a maximum in this structure function is found.
corresponds to the dominating valueukumax, indicating the
appearance of a spatial pattern with a wavelength 2p/ukumax.
After an optimal value ofa the maximum of the structure
function disappears, again signaling the destruction of
order.

FIG. 4. ~a! 2D Fourier transform of the pattern shown in Fi
3~b!. Rotational symmetry is observed.~max,min! values are
~1337,0.1!. ~b! Fourier transform averaged over angles forD51.0
and sj

251.8. Values of parametera are shown in the figure.~c!
Dependence ofSmax on a.
e
s-
r.

e

Next we consider the case of uncorrelated additive no
in which a50 andsz

2Þ0. Numerical simulations show tha
the behavior of the model is quite similar to the case of
correlated additive noise. An increase of the additive no
causes the formation of the rotationally symmetric spa
patterns. A further increase of the additive noise destroys
pattern~see Fig. 5!. These results are also in good agreem
with the predictions of mean field theory.

V. DISCUSSION

Now we discuss the mechanism providing the appeara
of the ordered spatially patterns with the increase of the
ditive noise and its further destruction. The appearance of
ordered state is a manifestation of the phase transition
one should understand which factors lead to this transit
To do this, let us follow the argumentation suggested in@6#
to give an explanation of the phase transition induced by
multiplicative noise but now influenced by the additiv
noise.

For a single element of the lattice the time evolution
the first moment is given simply by the drift part in th
Fokker-Planck operator, which reads~Stratonovich case!

^ẋ&5^ f ~x!&1
sj

2

2
^g~x!g8~x!&. ~15!

As it was argued in@6#, the evolution over short times of a
initial d function is well approximated by a Gaussian who
extremum obeys

ẋ̄5 f ~ x̄!1
sj

2

2
g~ x̄!g8~ x̄!. ~16!

Herex̄5^x& is the maximum of the probability, which is th
average value in this approximation. For this dynamics o
is able to introduce a potentialU(x)5U0(x)1Unoise5
2* f (x)dx2sj

2g2(x)/4, whereU0(x) is the unperturbed po
tential andUnoise,0 describes the action of the noise. In th
case under considerationU0(x)5x2(11x21x4/3)/2, which
is monostable with a minimum atx050.

Let us consider how additive noise modifies the poten
U(x). We start with the case ofsz

250 and additive noise is
included in the equations throughg(x)5a21x2 by the con-
stanta. For smalla the potentialU(x) remains monostable
and there is no possibility of a phase transition in the syst
If we increasea, i.e., the intensity of the correlated additiv
noise, the potentialU(x) becomes bistable ifa.acrit

51/Asj
2 @see Fig. 6~a!#. For sufficiently strong coupling this

bistability will be the reason for the local ordered regions
short time scales, which coarsen and grow with time. He
the additive part of the noise in the functiong is essential for
the occurrence of the nonequilibrium phase transition.

The situation with uncorrelated additive noise (a50 and
sz

2Þ0) is more complicated. In this case the statex50 al-
ways remains stable since the noisy partUnoise(x)}x4 @see
Fig. 6~b!#. Nevertheless, as it is seen from this figure, f
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FIG. 5. Snapshots of the field for in the case of the uncorrelated additive noise. The parametersz
2 is equal to~1! 0.001,~b! 0.7, and~c!

10.0. The remaining parameters areD53.5, sj
2513, a50, andDt51027. ~max,min! values are (0.0072,20.0075), (7.14,26.33), and

(1.07,20.61).
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large enough intensitysj
2 , in addition to the stable statex

50, the potentialU(x) has two minima more, precisely i
sj

2.4. Therefore, in this case the phase transition is a re
of hard excitation and requires independent additive no
Sufficiently large additive noise causes escapes from the
tral minimum and the system does not return if the n
minimal states are lower than the central one. This argum
tation can be considered as an intuitive explanation of
observed noise-induced phase transition by uncorrelated
ditive noise.

Another interesting finding to be mentioned is the relat
between phenomena discussed and the well-known prob
of stochastic resonance~SR!. Namely, we trace the parallel
between the nonmonotonic behavior of the signal to no
ratio ~SNR! in SR phenomena and the reentrant phase t
sitions dependent on the additive noise.

Let us consider possible reasons for this similarity. F
that purpose we reformulate the process of ordering in
bistable potentialU(x) as a situation typically occurring in
SR. The influence of the neighbors supplied by the coup
serves as a driving force for the single system in the lat
with a bistable potential. Under this influence every sin
system is trying to obey the rules of the whole system,
example, to choose the proper minimum of a potential. A
cordance with stochastic resonance becomes evident s
this information is best transmitted to the single system if
lt
e.
n-

n-
e
d-

m

e
n-

r
e

g
e
e
r
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e

intensity of an additive noise is optimally selected. F
smaller and larger values of noise intensity the ordering p
cess is not effective as in stochastic resonance. As a re
and quite analogously to the shape of the SNR, the maxim
of the structure function behaves nonmonotonically dep
dently on the parametera. The similarities are obviously
bounded since in SR the input is independent from the re
tion of the system. In our case it differs due to the mutu
interaction between the elements of the lattice. It determi
the structure of the output, which plays the role of the inp
for another element.

VI. CONCLUSION

In conclusion, we have shown by the example of the n
linear model with coupling term similar to that ofSwift and
Hohenbergthat an increase of the additive noise may s
prisingly induce ordered spatial patterns. The reason is
reentrant phase transition caused by the additive noise.
further increase of the additive noise destroys these st
tures. In both limiting cases of the correlation between ad
tive and multiplicative noise the pictures are similar but t
origins differ. We stress that this phase transition is poss
only in the presence of multiplicative noise. As we ha
discussed, we interpret the phenomenon observed as a c
t
e a
FIG. 6. Potential for the short time evolution of the average value^x(t)&. ~a! sj
252: solid line,a250.1; dashed line,a251.0. ~b! a

50: solid line,sj
252; dashed line,sj

255. In case~a! the short time behavior can be described by the bistable potential if the constana is
sufficiently large. In case~b! the situation is more complicated: the statex0 remains stable, but large enough additive noise can forc
system to leave the zero state and form a mean field.
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erative work of a noise-induced phase transition and orde
process with an optimal value of the additive noise. Fr
this point of view the phenomena observed can be un
stood as a mixture of the phase transition induced by
multiplicative noise and processes that have similarities
features of stochastic resonance.
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