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Spatial patterns induced by additive noise

A. A. Zaikin and L. Schimansky-Geier
Humboldt-Universitazu Berlin, InvalidenstraBe 110, 10115 Berlin, Germany
(Received 18 May 1998

We consider a nonlinear lattice with spatial coupling under the influence of multiplicative and additive noise.

In contrast to other studies, we pay attention mainly to the role of the additive noise and show that additive
noise, much like multiplicative noise, is able to induce spatial patterns. The reason is that the increase of
additive noise causes a nonequilibrium phase transition that manifests itself in the formation of ordered spatial
patterns. The presence of the additive noise correlated or uncorrelated with the multiplicative noise is a
necessary condition of the phase transition. We review the mean field theory for this model and show that this
theory predicts a reentrant phase transition caused by additive noise. Theoretical predictions are confirmed by
numerical simulationg.S1063-651X98)12510-3

PACS numbgs): 05.40+j, 47.54+r, 05.70.Fh

I. INTRODUCTION a set of Langevin equationg]

Over the past two decades nonlinear systems with noise X, = f(X)+9(X,) &+ LX, + ¢, (1)
have been continuously attracting attention. The reason is the
ordering role of noise in such phenomena as stochastic resg-. -
nance[f], noise-induced transp?c{rt], or noise-induced tran- With f andg defined as
sitions[3]. A large variety of model§4—12] appear to dem-
onstrate nonequilibrium noise-induced phase transition. In
these studies only multiplicative noise is shown to be the ) ] ]
reason for the transition and much less attention has beedd &.{; independent zero-mean-value Gaussian white
paid to the role of additive noise. Recently, we started tg10IS€ sources
study the influence of an additive noise on noise-induced

f(x)=—x(1+x%)?, g(x)=a?+x? 2)

transitions. It was shown that this influence can be crucial <§r(t)§r,(t’)>=(rgb‘r,r,ﬁ(t—t’), 3
because the additive noise may shift the boundaries of the
noise-induced phase transitiph3] or even cause these tran- (G (0 (t))= a?ﬁ,yryﬁ(t—t’). 4)

sitions[13,14].

In the present paper we continue to study the influence of ) o
additive noise on noise-induced phase transitions. We con- We note that such a form of the functigfix) implies that
sider the role of the additive noise in the formation of thethe parametea is responsible for an additive noise strongly
ordered spatially inhomogeneous patterns. For this we invesorrelated with the multiplicative one. To gain knowledge
tigate a paradigmatic model introduced #j (for the history ~ about the influence of additive noise on the noise-induced
of the subject see al§d5-18). As noted in[19], investiga- phase transition we study two different problems. First the
tion of this model is helpful for the understanding of resultsconstant contributiora? of the multiplicative noise¢, is
of experiments on electrohydrodynamic convection in nemchanged, setting;?:o_ The origin one could see, for in-
atic liquid crystals with thermal fluctuatioriadditive nois¢  stance, in a decomposition of the multiplicative noise into
and an external stochastic volta@aultiplicative nois¢. We o partsg(x) & =a2&l+x2¢2. Changing the parameter

show that this model displays noise-induced spatial patterng,, 4 imply an increase or a decrease of additive nafsé
with an increase of additive noise. After exceeding an opti-

o . . strongly correlated with the multiplicative one. We prove
mal level of the additive noise a further increase destroys th?n - C ;
structures again. at the constant contribution of that noise is essential for the

First we review mean field theory for this mod@l. The nonequilibrium phase transition. Only in the presence of the

theory predicts the existence of the reentrant phase transiti ditive compo_nent W't.h an _optlmally selected value does
by increasing the additive noise for two limiting cases of e system exh_|b|t _spa'glally d|so_rde_:red states. .
correlation between both additive and multiplicative noises. ,” different situation is the variation of the noise intensity
The transition manifests itself in breaking the symmetry and’¢ - It models additive noise Independeptly of the multlpl|-
appearing ordered spatial structures. Next we perform nufative one. In that case we set=0. Again we will find a
merical calculations and confirm some results of the theoretStrong influence of the additive noige _

ical considerations. After a discussion about understanding TNe spatial coupling in the model is described by the cou-

of the phenomena observed we summarize results obtaine!ing operator [see Eq(1)], which is a discretized version
of the Swift-Hohenberg coupling term D (g3+ V?)2:

Il. MODEL AND MEAN FIELD THEORY
2d
. , i . . ,
We consider a scalar field defined on a spatial lattice Lx,=— D[ 92— PZ‘

with pointsr. The time evolution of the field is described by

2
J X,. (5

J
1—exp{Ae,-E
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Vv in the case of uncorrelated additive noise. The param@fe'rs
equal to 1.0(label 1), 0.5 (label 2, and 0.3(label 3.
Note that for|k|<2w/A the dispersion relation(k) re-
0.0 . . . duces to the relation for the continuous Swift-Hohenberg
0.2 0.6 1.0 14 1.8

model: —D(q3— |k|?)2. For the most unstable mode in the
discrete casa (k) =0 (see[7]).

FIG. 1. (a) Boundaries of the phase transition on the plane Now the value(x) plays the role of the amplitude of the
(Ué ,D) in the case of correlated additive noise. The values of paspatial patterns with an effective diffusion coefficidDt;;.
rametera are shown in the picturgb) Dependence of the order The Fokker-Planck equation corresponding to &g.in the
parameter|(x)| on the control parametes for D=0.06 and(rg casew(k)=0 is
=3.0.

a

2

Heree are the unit vectors associated with the cubic lattice gy o 9
[f(x)— Deﬁ(x—<X>)]W—7(9(X) 5[9(X)W]>

of the dimensiord, andA is the lattice space. =
The conditions of phase transition can be found using

generalized Weiss mean field thedff]. According to this o'é% IW

theory, we replace the value of the scalar variableat the T2 X

sites coupled tx, by its averaged value, assuming the spe-

cific nonuniform average field

J
oX

For this equation it is possible to find the exact steady
state probability, parametrically dependent{c:

Xy =(xpcodk-(r—r")]. (6)
Substituting Eq(6) into Eq. (5) we get forx, o) = C((x)) exp( ijf(Y)—Deﬁ(y—<X>)d )
S [ 22 2 242 2
X=100+g(X) £+ DoKX~ Deylx— () +2, (7 Erer AT T
where whereC((x)) is the normalization constant determined by
D _<2d g3 2+ 2d+ (k)|D (8) 1
eff = P_ 0 P w C_l _ *
and - ) Lm“’égz(x)“’?

. ox p(z fxf(y)—Deﬁ<y—<x>> dy) ix

) o oigiy)+o;

[ 2
w(k)=—-D|qg3— 72(2—cosk,A—cokyA)

(12
The expression fow(k) can be obtained if one considers )
how £ acts on a plane wave'*'" for the case of a two- For the valug(x) we obtain
dimensional lattice:

LekT=p(K)elk T, (10 <X)=J’ XWX, (X)) dX, (13
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FIG. 3. Snapshots of the field f@=1.0, ng 1.8, andcr§=0. The parametea is equal to(a) 0.1, (b) 1.0, and(c) 10.0. The increase
of the additive noise induces spatial patterns. The scalar field from minimum to maximum value is coded in accordance with the color scale
shown in the same figure.

which is nonlinear equation for the unknown val»¢ and Now we study the case where the additive noise is uncor-
closes the system of equations. related (independent from the multiplicative noise g
Solving Eqg.(13), we can calculate boundaries of phases=0, oﬁé 0). As Fig. 2 shows in this case the behavior of
with (x)#0 (ordep and (x)=0 (disordej for specifick the system is qualitatively the same: For fixed parameters
whose modes are excited first. Nonzero solution of @)  (D,¢?) an increase of the multiplicative noise inten
means excitation of the corresponding mode and hence ex'&auses the noise-induced phase transition. Hence for large
tence of the phase transition. Due to the special form of thenough couplind one expects the formation of the spatially
spatial coupling, the transition manifests itself in a formationgrdered patterns |f,— exceeds it critical value. As concerns
of ordered spatial patterns with the wave number defined byhe influence of the additive noise on the transition, an am-

the parameteq. - plification of the additive noise intensity shifts the transition
The computation of E¢(13) shows that the condition for  poundaries and therefore causes the reentrant disorder-order-
the existence of nonzero solutions is disorder nonequilibrium phase transition. It can be clearly
seen if one take a point with fixed parameteds oﬁ-g) from

(14) point first belongs to the disordered phase, then to the or-

dF the dashed region in the Fig. 2: With an |ncreaser§>fth|s
’ dered one, and then again to the disordered phase.

We note that for rather larg® four nonzero rootstwo
stable and two unstablef Eq. (13) may be observed. Itis an
open question whether this indicates that additionally also We check the relevance of the theory presented above by
noise-induced first-order phase transition may be found imumerical simulations of the initial equatiofly. We use an

IV. NUMERICAL SIMULATIONS

this model(to this point see alsfl9,20). Euler scheme for stochastic differential equations interpreted
in the Stratonovich seng@1,22. The time step has been set
I1l. ADDITIVE NOISE AND NOISE-INDUCED At=5x10"%. For simulations we integrate the scalar field
TRANSITION x;(t) on a two-dimensional square lattice 2828 with

conditionsx, =0 andn- Vx,=0 at the boundaries. Hereis
First we study the case if an additive n0|se is stronglythe vector normal to the boundary.

correlated with multiplicative noisén this casezrg 0). For First we setg =0 anda#0. The remaining parameters
different values ofa the boundary of the phase transition on 56 p = 1, go=0. 7 A=0.5, anda —1.8. For these values
the plane ¢7,D) is shown in Fig. 1. As itis seen from this the mean field theory predicts the existence of spatial pat-
plot, the reentrant phase transition occurs for the specifigerns of the most unstable motid =1.0478 fora=1. For
value ofa with the increase of; [7]. Solving Eq.(13) for  additive noise intensities significantly larger than this value,
other values of, we find that aa decreases the boundary of for example,a=10.0, or significantly smallera=0.1, ac-

the phase transition significantly drops and is right shiftedcording to the mean field theory no spatial patterns will be
(see Fig. 1 Hence there is a set of parameten% (D) for  exhibited.

which the reentrant phase transition occurs with the increase In Fig. 3 the picture of the field after 100 time units has
of a (dashed region in Fig.)1 This means that for fixed been plotted for three different noise intensities. Clearly one
values ofcr§ and D an increase of additive noise intensity can see the appearance of the spatial patterns with the in-
will first induce the spatial patterns and then destroy themcrease of the additive noise and its further destruction. These
We note that this phase transition is possible only in thecalculations confirm the predictions of the mean field theory
presence of multiplicative noise. The corresponding depenrfor the case of correlated additive noise.

dence of the order parametéx)| on the control parameter The ordered patterns in Fig(l8 have rotational symme-

is shown in Fig. 1b). try, which can be clearly observed in the two-dimensional
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(a) Next we consider the case of uncorrelated additive noise,
in whicha=0 anda?;t 0. Numerical simulations show that
the behavior of the model is quite similar to the case of the
correlated additive noise. An increase of the additive noise
causes the formation of the rotationally symmetric spatial
patterns. A further increase of the additive noise destroys this
pattern(see Fig. 3. These results are also in good agreement
with the predictions of mean field theory.

V. DISCUSSION

Now we discuss the mechanism providing the appearance
of the ordered spatially patterns with the increase of the ad-
ditive noise and its further destruction. The appearance of the
ordered state is a manifestation of the phase transition, so
one should understand which factors lead to this transition.
To do this, let us follow the argumentation suggeste@6in
to give an explanation of the phase transition induced by the
multiplicative noise but now influenced by the additive
noise.

min max

(b) For a single element of the lattice the time evolution of
500 ' ' ' ‘ the first moment is given simply by the drift part in the
400 | Fokker-Planck operator, which reatftratonovich cage

10.0
2.0
= % 10
? 200 | 05 ()= <f(X)>+ (9 x)g’ (x)). (15
100 +
As it was argued iri6], the evolution over short times of an
(c) initial & function is well approximated by a Gaussian whose
extremum obeys
500 T T T T
° — ~ 0'2 Nl (v
400 . . x=f(x)+59(x)g" (). (16)
L4 ®
300
2ol .
o 200 f . Herex=(x) is the maximum of the probability, which is the
average value in this approximation. For this dynamics one
100 e is able to introduce a potentidl(x)=Uqy(X)+ U isc=
on . . . s —[f(x)dx— aggz(x)/4, whereUy(x) is the unperturbed po-
0 2 4 6 8 10 tential andU,,ic<<0 describes the action of the noise. In the

a case under consideratidiy(x) =x?(1+x2+x*/3)/2, which
is monostable with a minimum at,=0.

FIG. 4. (a) 2D Fourier transform of the pattern shown in Fig.  Let us consider how additive noise modifies the potential
3(b). Rotational symmetry is observedmax,min values are U(x). We start with the case sz 0 and additive noise is
(1337,0.}. (b) Fourier transform averaged over anglesf+1.0  included in the equations througﬂ(x) a’+x? by the con-
and 0¢=1.8. Values of parametex are shown in the figurelc)  stanta. For smalla the potentialU(x) remains monostable
Dependence 08, On a. and there is no possibility of a phase transition in the system.

If we increasen, i.e., the intensity of the correlated additive
Fourier transform of the field represented in Fig. 4. To makehoise, the potentialU(x) becomes bistable ifa>ag;
the transition more evident we have plotted the Fourier trans= 1/F [see Fig. 6a)]. For sufficiently strong coupling this
form of the field averaged over the angles of the wave vectonblstablllty will be the reason for the local ordered regions at
It is shown in Fig. 4 for different values af. With an in-  short time scales, which coarsen and grow with time. Hence
crease ofa a maximum in this structure function is found. It the additive part of the noise in the functigns essential for
corresponds to the dominating vallid ., indicating the the occurrence of the nonequilibrium phase transition.
appearance of a spatial pattern with a wavelength @,y The situation with uncorrelated additive noise<0 and
After an optimal value ofa the maximum of the structure aﬁé 0) is more complicated. In this case the state0O al-
function disappears, again signaling the destruction of thevays remains stable since the noisy pard{X)*x* [see
order. Fig. 6(b)]. Nevertheless, as it is seen from this figure, for
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FIG. 5. Snapshots of the field for in the case of the uncorrelated additive noise. The parzafn'etequal to(1) 0.001,(b) 0.7, and(c)

10.0. The remaining parameters @e- 3.5, a§=13, a=0, andAt=10"". (max,min values are (0.0072,0.0075), (7.14;6.33), and
(1.07-0.61).

large enough intensiwé, in addition to the stable state  intensity of an additive noise is optimally selected. For
=0, the potentialU(x) has two minima more, precisely if smaller and larger values of noise intensity the ordering pro-
o§>4. Therefore, in this case the phase transition is a resuftess is not effective as in stochastic resonance. As a result
of hard excitation and requires independent additive noiseand quite analogously to the shape of the SNR, the maximum
Sufficiently large additive noise causes escapes from the cewf the structure function behaves nonmonotonically depen-
tral minimum and the system does not return if the newdently on the parametes. The similarities are obviously
minimal states are lower than the central one. This argumersounded since in SR the input is independent from the reac-
tation can be considered as an intuitive explanation of théion of the system. In our case it differs due to the mutual
observed noise-induced phase transition by uncorrelated athteraction between the elements of the lattice. It determines

ditive noise. S _ _ ~the structure of the output, which plays the role of the input
Another interesting finding to be mentioned is the relationfgr another element.

between phenomena discussed and the well-known problem
of stochastic resonan¢&R). Namely, we trace the parallels
between the nonmonotonic behavior of the signal to noise
. . VI. CONCLUSION
ratio (SNR) in SR phenomena and the reentrant phase tran-

sitions dependent on the additive noise. In conclusion, we have shown by the example of the non-
Let us consider possible reasons for this similarity. Forinear model with coupling term similar to that &wift and
that purpose we reformulate the process of ordering in thélohenbergthat an increase of the additive noise may sur-
bistable potentiall(x) as a situation typically occurring in prisingly induce ordered spatial patterns. The reason is the
SR. The influence of the neighbors supplied by the couplingeentrant phase transition caused by the additive noise. The
serves as a driving force for the single system in the latticdurther increase of the additive noise destroys these struc-
with a bistable potential. Under this influence every singletures. In both limiting cases of the correlation between addi-
system is trying to obey the rules of the whole system, fortive and multiplicative noise the pictures are similar but the
example, to choose the proper minimum of a potential. Ac-origins differ. We stress that this phase transition is possible
cordance with stochastic resonance becomes evident sinoaly in the presence of multiplicative noise. As we have
this information is best transmitted to the single system if thediscussed, we interpret the phenomenon observed as a coop-

(a) (b)
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FIG. 6. Potential for the short time evolution of the average vak(¢)). (a) a§=2: solid line,a?=0.1; dashed linea?=1.0. (b) a
=0: solid Iine,o§:2; dashed Iinea§:5. In case(a) the short time behavior can be described by the bistable potential if the coassant

sufficiently large. In caséb) the situation is more complicated: the stateremains stable, but large enough additive noise can force a
system to leave the zero state and form a mean field.
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